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This report was prepared as an nccount of Governmont sponsored work. Neither the
United States, nor the Commission, nor any person ncting on behnlf of the Commisasion:

A. Makes any warranty or representation, expreasod or implicd, with respect to the
accuracy, completeneas, or usefulness of the information contained in this report, or
that the use of any information, apparatus, material, method, or process disclosed in
this report may not infringe privately owned rights; or
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from the use of any information, apparatus, material, method, or process disclosed
in this report.

As used in the above, *‘person acting on behall of the Commission’’ includes any
employee or contractor of the Commission, or employee of such contractor, to the
extent that such employee or contractor of the Commission, or employee of such
contractor prepares, disseminates, or provides access to, any information pursuant

to his employment or contract with the Commission or his employment with such
contractor.
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INTRODUCTION

The cavity reactor concept has been proposed for a number of
applications, such as magnetohydrodynamic power production and nuclear
rocket propulsion. The latter application led the National Aeronautics and
Space Administration to undertake a critical experiment of a full size
mockup rocket reactor to determine if the reactor physics design cal-
culations were correct. This experiment is currently in operation at the
National Reactor Testing Station by the General Electric Company for
NASA™®. This recent critical experiment reactor is substantially larger
than those previously measured Fl). Results of various configurations
that simulated the gas of the core with thin, 0,001 in. thick, uranium
foils have been reported previously (2), (3), (4),

The critical mass vs. fuel radius for these configurations is
shown in Figure 1. All configurations had a central cavity 6 ft in dia-
meter by 4 ft long, and the fuel radius was adjusted while maintaining
the 4 ft fuel length of the full cavity. Calculations of these configurations,
using diffusion theory for the case in which fuel occupied nearly the
full cavity diameter and transport theory when a void existed between
the fuel and the heavy water, have generally failed to predict the measured
critical mass within the order of 10%.

An unevaluated experimental bias was postulated for the effect
of fuel sheet distribution vs. the effect of a uniformly dispersed gas
which was assumed in the calculations. The fuel sheets were arranged
on aluminum fuel trays as shown in Figures 2 and 3. There are paths
through this arrangement that encounter no fuel sheets (approximately
1/2% of the total paths) and other paths that encounter a much greater
effective fuel thickness than would be encountered in a uniform gas of
the same average fuel density. The fuel distribution effects, though
not analyzed rigorously at the present, have been analyzed statistically.
Variations of as much as 5% to 10% in fuel interaction rate have been
indicated between the two types of fuel, with the higher interaction rate
existing in the uniform gas configuration as illustrated in Figure 4. To
determine if the foil distribution was indeed introducing a bias of this
magnitude, the gas-core critical experiment was undertaken. An actual
gaseous (UFé) core configuration was made critical, on May 17, 1967,
and subsequent measurements were made to compare the results from
the real gas configuration with those from a mockup foil configuration
of the identical dimensions.

SYSTEM DESIGN

The gas-core tank was designed to contain the fuel in a 4 f{t
diameter, by 43 in. long tank which is shown in Figure 5. This
arrangement was tested in a mockup experiment prior to performing
the gaseous core experiment. Since UF, is a solid at ordinary temp-
erature, it was necessary to provide a mechanism for heating the
core-tank to temperatures of the order of 200"F. Because of the
significant effect of neutron absorbers on the critical mass, it was

* Under contract to the Atomic Energy Commission
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Fig. 3 Aluminum fuel tray arrangement
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important to use only low cross section materials, particularly at the
outside boundary of the fuel (the tank walls). Aluminum was chosen as
the structural container and hot air as the heating medium circulating

in a quarter inch annulus at the outside of the tank. The UF, was trans-
ferred into or out of the tank through 0.305 in. I.D. monel lines that were
within the hot air ducts. The hot air ducts and UF¢ transfer lines extended
about 20 ft to standard UF¢ transfer and storage bottles. This system is
illustrated in Figures 5, 6 and 7. The operating conditions are shown in
Figure 8 for the two basic configurations measured, a reflector of all
D,0 and one with a 4 in. thick slab of beryllium located 6.7 cm from the
cavity wall.

OPERATING EXPERIENCE

Initial transfer rates of UF, to the core tank were as high as
2 Ib/hr, but slowed to less than half of this as the bottles became near
empty. Reverse transfer into the bottles from the tank was as rapid as
5 1b/hr initially, but slowed to very low rates as the tank became empty.
Each inventory of fuel was obtained by evacuating the transfer lines using
only the pumping action of a cold trap, and then weighing the cold trap and
the UF6 bottles.

The approach to criticality was made with the usual incremental
increases in fuel loading, making certain that the total vaporization
temperature-pressure conditions were equaled or exceeded. Typical
reactivity effects of tank temperature, once criticality had been achieved
are shown in Figure 9. As indicated, the reactivity rose slowly while
heating after vaporization temperature was reached and continued to
increase slowly after the heater and blower were turned off while the
wall temperature decreased. When the blower was turned on the
reactivity increased rapidly producing a reactivity spike and then
decreased with continued cooldown. It was suspected that the reactivity
spike was due to an initial condensation on the inner surface wall. A
similar measurement is shown in Figure 10 with two reactivity spikes
on cooldown. The first is postulated to be due to the initial condensa-
tion on the flat end of the tank where the cold air impinges and the
second due to the cooling of the outer radial wall. No explanation is
given for the very slow reactivity rise during the operation when all
of the fuel should be vaporized.

Throughout all operations, the hot air stream was monitored
at its exit from the tank by an alpha detector and then filtered. Uranium
leaks were not detected; though short lived radon daughter products
were observed.

EXPERIMENTAL RESULTS AND CONCLUSIONS

As previously mentioned, a mockup of the UF, experiment
was performed prior to performing the gas experiment. There were
differences in aluminum structure inside the fuel region between the
mockup experiment and the UF¢ experiment, and the UF contained
fluorine which was not simulated in the mockup. Measurements were
made of the worth of fluorine, using Teflon and carbon, and the worth
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Fig. 6 Reactor core tank

and heating duct




Fig. 7 Gas transfer equipment
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of aluminum in order to correct for these differences between the experi-
ments. The aluminum material at the edge of the fuel region was duplicated
almost exactly in the gas and mockup experiments. The resulting compari-
son of experimental results is shown in Table 1.

A new core mockup has been assembled and is illustrated in Figure
11. This fuel support structure features fuel boxes 3 in. square by 4 ft long
which are supported within an aluminum support structure. Figure 12 shows the
fuel arrangement and illustrates the method in which zero interaction fuel
paths are minimized. This assembly achieved criticality on October 25
with a mockup of the gaseous experiment. The fuel loading corrected for
differences in aluminum within the fuel region with this assembly is
within 5 % of the gaseous experiment and indicates that this arrangement
is superior to the original arrangement. It is concluded that this mockup
provides an adequate representation of the gas core and can be used to
study variations in materials and geometry that are extremely difficult
with the gas core. It is further concluded that a correction of the order
of 9% should be applied to prior results to correct for fuel heterogeneity.
The work planned for the near future is to evaluate the complete effect
of structural materials and the hydrogen coolant.
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Fig. 11 Cavity reactor fuel support structure



Fuel Sheet— 93% U-235
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